Cruise Results # NOAA RV MILLER FREEMAN and RV CHAPMAN Cruise MF83-01, Leg III and IV and CH83-02, Leg II Shelikof Strait and Western Gulf of Alaska Echo Integrator-Midwater Trawl Survey of Spawning Pollock (Theragra chalcogramma) # Introduction The largest documented pollock spawning concentration in the western Gulf of Alaska occurs in Shelikof Strait, mainly from mid February through March. A great deal of interest has been expressed in the concentration because of its commercial value and as an indicator of the condition of the pollock stock in the west-central Gulf. In response, echo integration-midwater trawl surveys have been conducted in Shelikof Strait in 1980, 1981 and 1983. The 1983 survey is described and some preliminary results are presented. # Cruise Period, Area, and Itinerary # MILLER FREEMAN The MILLER FREEMAN completed an echo integrator-midwater trawl survey of Shelikof Strait, and the outer shelf/upper slope (50-200 fm) area southwest of Kodiak Island and along the Alaska Peninsula, on April 13, 1983. During Leg III, a survey of the area between Albatross Bank (southeast of Kodiak) to southwest of Chirikof Island and two surveys of Shelikof Strait were completed (Fig. lA). The outer shelf/upper slope area from Unimak Island to Chirikof Island and Shelikof Strait were surveyed on Leg IV (Fig. lB). The cruise itinerary was: | March 2-3 | Equipment installation, Kodiak | |-------------------|--| | March 3-20 | Leg III survey; Albatross Bank to southwest of | | | Chirikof Island (March 3-6) and 2 surveys of | | | Shelikof Strait (March 6-20). | | March 21-22 | In-port, Kodiak | | March 23-24 | Transit to survey area | | March 25-April 13 | Leg IV survey; Unalaska Island to Chirikof | | _ | Island (March 25-April 6) and Shelikof Strait | | | (April 6-13). | #### CHAPMAN The CHAPMAN completed an echo integrator-midwater trawl survey of Shelikof Strait and the east side of Kodiak Island (Fig. 2) on April 10. The Shelikof Strait survey was started near Kupreanoff Strait and ended west of the Trinity Islands. The east side of Kodiak Island was surveyed from near Cape Trinity to Portlock Bank. The vessel itinerary was: March 23 Equipment installation, Kodiak. March 24-April 3 Survey of Shelikof Strait April 5–10 Survey of Cape Trinity to Portlock Bank area. #### OBJECTIVES The MILLER FREEMAN and CHAPMAN echo integrator - midwater trawl surveys were conducted as a comprehensive survey of spawning pollock in the western Gulf of Alaska. About 65 percent of the survey effort was expended in Shelikof Strait. The remainder was used to conduct exploratory surveys from Unimak Island to East of Kodiak Island. The primary objectives were to: (1) collect echo integration data necessary to determine the distribution and biomass of the off bottom component of pollock aggregations, (2) collect data necessary to determine their biological composition (sex, size, age and maturity), and (3) to collect data on the timing of peak spawning of the Shelikof Strait concentration. Data on the on-bottom component of the Shelikof Strait pollock aggregation was collected during a bottom trawl survey conducted by the CHAPMAN (see cruise results; CHAPMAN, Cruise 83-01), during Leg III of the MILLER FREEMAN cruise. # ACOUSTIC EQUIPMENT AND TRAWL GEAR # MILLER FREEMAN Echo integration data were collected using a Biosonics model 101 echo sounder and a model 120 digital echo integrator. The integrator output was interfaced to a Radio Shack model III computer for preliminary data handling and storage on floppy disk memory. The echo sounder operated at 38 KHz, using a pulse width of 0.6 ms. A dead weight body containing the transducer (6° full beam angle) was towed behind the ship at a depth of approximately 16 m, at a speed of about 8.5 km. The midwater trawl used throughout the survey was a Diamond-1000, equipped with a 1.25 in (3.2 cm) ccd end liner. It was fished with two 275 lb (125 kg) tom weights and 6 x 9 ft.(1.8 x 2.7 m) steel Vee doors. Net operation was monitored using a third-wire type, headrope mounted netsounder. The vertical mouth opening varried from 15 to 18 m (about 8-10 fin). ^{1/} Reference to trade names of commercial firms does not imply endorsement by the National Marine Fisheries Service, NOAA. # CHAPMAN The echo integration system used on the CHAPMAN was the same as that on the MILLER FREEMAN, except that it included a smaller transducer (10° full angle) mounted in a Vee-fin towing body, which was towed at a depth of about 19 m at an average speed of 7 km. Midwater trawl gear was the same as that an the MILLER FREEMAN. In addition, an 83-112 bottom trawl, fished with the same doors as the midwater trawl, was used on 3 occasions. The bottom trawl was also equipped with a 1.25 inch (3.2 cm) mesh cod end liner # SURVEY METHODS Surveys were conducted on a 24 hour/day schedule on the MILLER FREEMAN and the CHAPMAN. Echo integration data were collected along zig-zag tracklines with approximate 10 nm spacing between adjacent transect end points except for the second MILLER FREEMAN survey in Shelikof Strait, which had 15 nm spacing. Outside of Shelikof Strait, transects were run between the 50 and 200 fm contours and within Shelikof Strait, between the 50 fm contours. Echo integration values (fish density estimates in kg/m³) were output after each 5 minutes of transecting time, for selected depth intervals from 5 m below the transducer to the sea bed. Trawl hauls were made on selected concentrations of fish for species identification and to obtain pollock biological data and samples. The total number and wight of fish in each haul was determined for each species, either by sorting the entire catch or a sample, depending upon catch quantities. Pollock sex, length and maturity composition data were collected from 150-250 randomly selected fish in every haul. In addition, for most hauls, about 100 individual otoliths and 50 length-weight measurement/stomach content observations were collected. Two special purpose collections of pollock ovaries and one of scales were obtained. A limited amount of data on other species (mostly length frequencies) was also collected. # RESULTS The MILLER FREEMAN ran a total of 4398 trackline miles and completed 45 midwater trawl hauls. The CHAPMAN ran 1434 trackline miles and campleted 11 midwater and 3 bottom trawl hauls. Trawl haul locations are shown in Figure 3. The frequency of occurrence of species taken in midwater trawl hauls is shown in Table 1. Catch data (by haul) are summarized in Tables 2 and 3. The numbers of pollock sampled for different types of biological data/samples are shown in tables 4 and 5. The total catch by species (% by weight) on the MILLER FREEMAN was: pollock, 91.7%; Pacific cod, 4.5%; eulachon, 2.1% and; other species, 1.6%. The CHAPMAN catch was: pollock, 98.5%; Pacific cod, 0.4%; eulachon, 0.3% and; other species, 1.6%. With one exception, only trace amounts of pollock were found in the regions surveyed outside the Shelikof Strait-Semidi Island area, so none of those echo integration data were analyzed. Asmll aggregation of pollock, extending over an area of about 4-5 km² was found near Sanak Island, at Sandman Reefs. In contrast, the area of the pollock aggregation inside the Shelikof Strait-Semidi Island area ranged from 12,123 km², during its heaviest concentration (just prior to spawning; survey 2, March 16-19), to 19,700 km² after the start of its post spawning dispersion (Fig. 4). Preliminary mturity composition data indicate that peak spawning occurred from March 19-30. During the second MILLER FREEMAN survey of Shelikof Strait (March 16-19), 75 percent of the femles (> 30 cm length) were mture and about 3 percent were spawning. In contrast, during the CHAPMAN survey (March 25-April 3), 15 percent of all femles (> 30 cm length) were spawning and 65 percent were spent. The pollock biamss estimates for the first and second MILLER HREMAN surveys in Shelikof Strait were 2.466 and 2.360 million t, respectively. The estimates for the CHAPMAN survey (0.903 million t) and for the third MILLER FREEMAN survey (0.819 million t) were much lower due to the post spawning breakup of the aggregation which occurred before either survey was conducted. A very low biamss estimate was also obtained for the 1980 survey (conducted during a similar time period), indicating that timing is critical and estimates of peak biamss of the Shelikof Strait aggregation my not be reliable for surveys conducted much outside March 1-25. The major factors that influence the timing of peak spawning are not well known. The conduct of the Shelikof Strait surveys in relation to the movements of pollock into, and within, the spawning area could have effected the accuracy of biomass estimation. Thus, the average of the survey 1 and 2 biamss estimates (2.413 million t) is considered to be a more appropriate estimate of the peak biomass for 1983 than are the individual survey estimates, and is used throughout the reminder of this report where age specific biomass or populations of pollock are given. 'Preliminary estimates were made of age specific biomass and populations of pollock, based on age and age specific weight composition data from eight trawl hauls made during the first leg of the MILLER FREEMAN survey. Age specific biamss (B₁) was calculated by; $$\hat{B}_{i} = \frac{\overline{W}_{i} N_{i}}{(\overline{W}_{i} N_{i})} \hat{B}_{t} ,$$ where \overline{W}_i and N_i are the weight-at man length and the number of pollock in the eight hauls, at age i; B_i is total estimated biomass. Age specific numbers of pollock in the population were then estimated by dividing B_i by \overline{W}_i . Estimated age specific biomass and populations as well as percentage age compositions, sex ratios, man lengths and weights of the pollock in the eight trawl hauls, are presented in Table 6. Total biomass and confidence interval estimates for the 1980, 1981 and 1983 surveys are presented for comparison in Table 7. Further analyses and interpretation of the survey data are in progress and will be reported elsewhere. # SCIENTIFIC PERSONNEL #### MILLER FREEMAN Leg III and IV Edmund Nunnallee (3/2 - 4/61 Chief Scientist, NWAFC **(3/2 -** 3/23; 4/6 **-** 4/13) Martin Nelson Fishery Biologist, NWAFC Neal Williamson (3/2 - 3/23)Statistician, NWAFC (3/2 - 4/13)Electronics Tech. NWAFC John Garrison (3/2 - 4/13)Eric Stirrup NOAA Corps Officer, NWAFC (3/2 - 4/13)Biological Tech., NWAFC Greg Jensen Biological Tech., NWAFC (3/22 - 4/13)John Rosapepe Daniel Doty (3/22 - 4/13)Biological Tech., NWAFC Leg II CHAPMAN Chief Scientist, NWAFC Jimmie Traynor (3/23 - 4/10) Statistician, NWAFC Biological Tech., NWAFC Biological Tech., NWAFC Biological Tech. , NWAFC Neal Williamson (3/23 - 4/10) Jeff Parkhurst (3/23 - 4/10) Dion Powell Becky Talty **(**3/23 **-** 4/10 **)** (3/23 - 4/10) For further **information** contact Dr. Murray L. Hayes, Division Director, Resource **Assessment** and Conservation Engineering Division, Northwest and Alaska Fisheries Center, National Marine Fisheries Service, 2725 **Montlake** Boulevard East, Seattle, Washington 98112. Telephone (206) 442-7719. Table 1. List of species taken by midwater trawl and their frequency of occurrence in 56 hauls during Leg III and IV of MILLER FREEMAN Cruise 83-01 and Leg II of CHAPMAN Cruise 83-02. | Species | | ncy of occurrence o. of hauls) | |------------------------------|------------------------------|--------------------------------| | Lamnidae | | | | Lamna ditropis | (Salmon shark) | 1 | | Rajidae | | | | Raja binoculata | (Big skate) | 3 | | Clupeidae | | | | Clupea harengus pallasi | (Pacific herring) | 2 | | Salmnidae | | | | Oncorhynchus tshawytscha | (Chinook salmn) | 2 | | Osmeridae | | | | Thaleichthys pacificus | (Eulachon) | 35 | | Myctophidae | | | | (Unider | ntified lanternfish) | 2 | | Gadidae | | | | Gadus macrocephalus | (Pacific cod) | 32 | | Theragra chalcogramma | (Walleye pollock) | 56 | | Scorpaenidae | | | | Sebastes aleutianus | (Rougheye rockfish) | 3 | | Cyclopteridae | | | | Aptocyclus ventricosus | (Smooth lumpsucker) | 15 | | Pleuronectidae | | | | Atheresthes stomias | (Arrowtooth flounder) | 19 | | Hippoglossus stenolepis | (Pacific halibut) | 3 | | Hippoglossoides elassodon | (Flathead sole) | 11 | | Lepidopsetta bilineata | (Rock sole) | 2 | | Reinhardtius hippoglossoides | (Greenland turbot) | 1 | | Pandalidae | | | | Pandalopsis dispar | (Sidestripe shrimp) | 2 | | Others | | | | (Unider | ntified jellyfish) | 14 | | (Uniden | tified ctenophore) | 1 | | (Unider | tified salps) | 1 | Table 2. Summary of midwater trawl station and catch data; MILLER FREEMAN Cruise 83-01, Legs III and IV. All hauls except nos. 27-31 were made in Shelikof Strait. | | | | | | | | | Catch (1bs) | | | | |------|------|------|-------------------|-----------|---------------------|---------------|-------------------------|-------------|-----------|---------|-------------------------------| | | | | Start Po | | epth (fm)
(Gear/ | Dura-
tion | Water Temp.
Surface/ | | | Pacific | | | Haul | Date | Time | Lat. (N) | Long. (W) | Bottom) | (Min) | Gear (°C) | Pollock | Eulachon | Cod | Other | | | 7/0 | 1700 | F (0 * F 0 ! : | • | 124/142 | 70 | 4.5/5.2 | 1661 5 | 17.0 | 10 [| 10.0 | | 1 | 3/9 | 1300 | 56°35.0' | 155°53.2' | 124/142 | 30 | 4.5/5.2 | 1661.5 | 13.0 | 12.5 | 10.0 | | 2 | 3/9 | 1600 | 56°44.2' | 155°51.5' | 144/159 | 10 | 4.2/5.7 | 1439.5 | 78.5 | 13.5 | 2.0 | | 3 | 3/10 | 1300 | 57°00.0' | 155°46.3' | 104/151 | 10 | 4.0/5.0 | 367.0 | 45.5 | | | | 4 | 3/10 | 1500 | 56°59.0' | 155°41.1' | 140/157 | 10 | 4.0/5.0 | 4343.9 | 18.9 | 170.0 | 12.0 | | 5 | 3/10 | 1600 | 56°56.1' | 155°40.8' | 133/157 | 20 | 4.0/5.0 | 2187.0 | 5.0 | 14.0 | 14.0 | | 6. | 3/11 | 1000 | 57°01.7' | 155°01.3' | 78/88 | 25 | 4.3/5.1 | 3310.0 | 2.0 | | | | 7. | 3/11 | 1200 | 57°00.7' | 155°17.1' | 113/137 | 19 | 4.0/ | 560.5 | 1.0 | | 6.0 | | 8. | 3/12 | 1000 | 57°35.9' | 155°08.2' | 120/142 | 1 | 4.2/ | 2100.0 | - | 26.0 | 3.0 | | 9. | 3/12 | 1100 | 57°34.1' | 155°15.1' | 110/153 | `30 | 4.2/5.3 | 566.0 | 48 5 | 9.0 | 7.5 | | 10. | 3/12 | 1400 | 57°19.0' | 155°41.5' | 136/149 | 20 | 3.8/ | 3154.3 | 159 3 | | - , - , | | 11 | 3/13 | 1700 | 57°29.3' | 155°03.2' | 114/128 | 30 | 4.7/4.8 | 1989.0 | 51.3 | 15.8 | 21.1 | | 12 | 3/14 | 1100 | 57°52.7' | 154°26.6' | 79/126 | 5 | 4.1/ | 6967.0 | | | | | 13 | 3/14 | 1200 | 57°53.6' | 154°31.5' | 108/130 | - -, | 4.0/ | 17101.0 | | 899.0 | | | 14 | 3/14 | 1600 | 57°45.3' | 155°02.0' | 158/170 | 18 | 4.2/5.2 | No Catc | h - Gear | Problem | | Table 2. (continued) | | | | ~ - | | Depth (fm) Dura- | | Water Temp. | | | | | |----------|------|-------|------------|------------|------------------|---------------|-----------------------|---------|----------|----------------|-------| | Haul | Date | Time | Start Pos | | (Gear/ | tion
(Min) | Surface/
Gear (°C) | Pollock | Eulachon | Pacific
Cod | Other | | <u> </u> | Date | | Lat. (N) | Long. (W) | Bottom) | (LITI)) | Geal (C) | POHOCK | Eurachon | Cou | Other | | 15 | 3/14 | 1800 | 57'43.9' | 155°02.0' | 136/151 | 7 | 3.1/6.2 | 1293.0 | 1.0 | 6.0 | | | 16 | 3/15 | 1900 | 58'00.8' | 154'19.4' | 128/148 | 2 | 3.3/6.1 | 2950.0 | | | | | 17 | 3/16 | 1500 | 56'50.2' | 155'38.6' | 140/154 | 2 | 4.0/6.0 | 2823.8 | 17.2 | | | | 18 | 3/17 | 1100 | 57°20.6' | 155'28.1' | 130/145 | 1 | 4.4/ | 900.0 | | | 14.0 | | 19 | 3/17 | 1300 | 57'21.9' | 155'33.3' | 123/155 | 43 | 4.4/ | 419.0 | 2.0 | | | | 20 | 3/18 | 0900 | 57'46.1' | 155'00.3' | 153/170 | 4 | 4.4/4.6 | 1225.0 | 1.0 | 6.0 | 3.0 | | 21 | 3/18 | 1200 | 57'35.0' | 155°23.8' | 149/176 | 5 | 4.3/6.3 | 748.0 | | | 8.0 | | 22 | 3/18 | 1400 | 57'27.2' | 155'21. 8' | 134/148 | 4 | 4.4/ | 1282.0 | 1.0 | 12.0 | 5.0 | | 23 | 3/19 | 1500 | 58'08.7' | 153'29.2' | 95/115 | 30 | 4.8/5.2 | 286.0 | 5.0 | 23.0 | | | 24 | 3/19 | 1900 | 57'58.6' | 154'19.6' | 114/136 | 2 | 5.0/6.5 | 399.0 | | 7.0 | 0.5 | | 25 | 3/19 | 0000 | 57'47.2' | 155'01. 9' | 128/145 | 13 | 4.6/6.3 | 751.0 | 1.0 | 41.0 | 2.0 | | 26 | 3/20 | 0900 | 57'27.7' | 155'27.4' | 138/158 | 1 | 4.6/5.9 | 454.0 | 1.0 | | | | 27 | 3/25 | 1700 | 53'25.8' | 165'49.6' | 170/275 | 30 | 4.7/6.3 | 1.0 | | | 0.2 | | 28 | 3/27 | Abort | ed because | of trawl s | ystem hydr | aulic pr | oblems | | | | | | 29 | 3/28 | 2100 | 54'30.5' | 162'25.6' | 46/79 | 42 | 2.6/3.2 | 400.0 | | 462.0 | 5.0 | | 30 | 3/30 | 1800 | 54'31.5' | 160'49.1' | 140/180 | 48 | 3.5/5.4 | 697.0 | | | 1.0 | Table 2. continued | | | | | | | _ | | | Catch (1bs) | | | | |------|------|------|------------|--------------------|---------------------------------|------------------------|-------------------------------------|---------|-------------|-----------------|-------|--| | Hau1 | Date | Time | Start Posi | ition
Long. (W) | Depth (fm)
(Gear/
Bottom) | Dura-
tion
(Min) | Water Temp
Surface/
Gear (°C) | Pollock | Eulachon | Pacific
Cod_ | Other | | | 31 | 3/31 | 1600 | 55°34.6' | 160°18.2' | 97/103 | 6 | 5.0/3.7 | 1400.00 | | 5.0 | | | | 32 | 4/6 | 1900 | 55°55.5' | 156°40.1' | 36/109 | 18 | 5.1/4.5 | 1390.0 | | | | | | 33 | 4/7 | 0900 | 56°25.6' | 156°14.5' | 118/145 | 108 | 4.8/5.0 | 1765.0 | 9.0 | 42.0 | 4.0 | | | 34 | 4/7 | 2200 | 56°38.6' | 155°54.7' | 100/145 | 60 | 5.2/5.5 | 871.0 | 54.5 | 92.0 | 14.0 | | | 35 | 4/8 | 1000 | 56°47.1' | 155°09.4' | 35/45 | 30 | 4.9/5.1 | 1376.0 | | 20.0 | 4.0 | | | 36 | 4/9 | 0900 | 57°08.4' | 155°47.2' | 138/153 | 30 | 5.0/5.0 | 1616.4 | | 157.0 | 5.1 | | | 37 | 4/9 | 1100 | 56°06.8' | 155°47.2' | 85/151 | 48 | 5.0/5.0 | 512.0 | 5.0 | :- | | | | 38 | 4/9 | 2100 | 57°20.1' | 154°57.8' | 98/111 | 12 | 5.4/5.0 | 348.0 | 0.7 | | 6، ۵ | | | 39 | 4/10 | 1200 | 57°39.8' | 155°00.2' | 130/140 | 150 | 5.4/5.2 | 1034.0 | 7.0 | 43.0 | 40 ⋅0 | | | 40 | 4/10 | 1900 | 57°39.9' | 154°20.6' | 57/71 | 6 | 5.4/5.2 | 483.0 | | | | | | 41 | 4/11 | 1400 | 58°.01.3' | 154°20.1' | 105/144 | < 1 | 4.2/5.2 | 341.0 | | | | | | 42 | 4/11 | 1600 | 58°01.9' | 154°16.6' | 90/150 | 26 | 4.2/5.2 | 417.0 | | | | | | 43 | 4/12 | 1400 | 58°36.2 | 152°47.0 | . 73/104 | 18 | 6.6/5.5 | 352.0 | | | .09 | | | 44 | 4/12 | 2000 | 58°13.5' | 153°18.3' | 109/118 | 60 | 6.2/5.5 | 2716.9 | | 120.0 | .7 | | | 45 | 4/13 | 0600 | 57°58.9' | 154°17.8' | 116/129 | 12 | 5.4/5.7 | 1373.0 | 1.0 | 70.0 | | | Table 3. Summary of midwater and bottom trawl station and catch data; CHAPMAN Cruise 83-02, Leg II. Catch (1bs.) | Hau1 | Date | Time | Start Pos | | Depth(fm) | Durazion | Wager gemp(°C)
Surface/Gear | Pollock | Eulachon | Paci c | 0±her | |-------|------|---------|-----------|-----------|--------------|----------|--------------------------------|---------|-----------|--------|--------| | Haur | Date | 1 Tille | Lat. (N) | rôn g. (M | Gear/Bottom) | (Min) | Surrace/ Gear | POTTOCK | Euraciion | | | | 1 | 3/30 | 0900 | 57°50.1' | 154°43.8' | 118/138 | 29 | 5.3/5.0 | 560.5 | 0.2 | 11.0 | 14.5 | | 2 | 3/30 | 1000 | 57°49.8' | 154°42.9' | 103/145 | 13 | 5.3/5.0 | 302.5 | 0.1 | 3.0 | 1.7 | | 3 | 3/30 | 2000 | 57°34.1' | 155°04.9' | 80/130 | 4 | 5.1/ | 319.5 | 0.8 | 10.5 | 0.5 | | 4 | 3/30 | 2100 | 57°35.7' | 155°10.8' | 149/150 | 35 | 5.1/ | 2042.5 | 0.2 | 30.1 | 3.9 | | 5 | 3/31 | 2000 | 57°24.9' | 155°11.5' | 90/33 | 24 | 4.8/ | 2958,1 | 17.2 | 27.5 | 1.2 | | 6(B) | 3/31 | 2100 | 57°24.0' | 155°12.6' | 133/133 | 10 | 4.8/ | 1319.4 | 20.5 | 45.0 | | | 7 | 4/01 | 1800 | 56°56.3' | 155°14.8' | 60/122 | 15 | 4.8/ | 596.0 | | | 0.2 | | 8 | 4/01 | 2000 | 56°54.1! | 155°11.2' | 94/120 | 30 | 5.0/ | 2578,2 | 46.5 | 6.0 | 13.3 | | 9 | 4/02 | 1800 | 56°36.6' | 155°22.8' | 30/50 | 26 | 4.6/ | 5220.5 | | | | | 10 1 | 4/06 | 0800 | 57°03.7' | 152°45.1' | 75/95 | 60 | 4.9/ | 95.0 | 0.1 | | 1.0 | | 11. | 4/06 | 1800 | 57°09.2' | 152°25.5' | 68/83 | 53 | 4.8/ | 8918.9 | | | 150.0 | | 12(B) | 4/06 | 2000 | 57°08.51 | 152°26.5' | 86/86 | 27 | 4.6/5.5 | 2.0 | | 22.0 | 1692.8 | | 13(B) | 4/08 | 0800 | 57°34.1' | 151°46.5' | 85/85 | 30 | 3.8/ | 71.5 | | 249.5 | 2179.0 | | 14 | 4/09 | 0800 | 57°49.6' | 14≥°45.3' | 152/154 | 15 | 4.6/5.5 | 297.5 | 0.5 | 5.0 | 7.8 | ⁽B) denotes bottom trawl haul. Table 4. Numbers of pollock sampled for various t—— of biological data/samples, by haul, on MILLER FREEMAN Cruise 83-01, Leg III and IV | | HAUL | LENGTHS | OTOLITHS | MATURITIES | WEIGHTS | STOMACI
SCANS | ovaries | SCALES | |--------|----------|------------|------------|----------------------------|-----------------|------------------|-------------|-------------| | | 1 | 357 | 125 | 178 | 53 | 47 | 42 | | | | 2 | 363 | 51 | 1178 | 68 | 52 | 42 | | | | 3 | 161 | 54 | 54 | | <i>32</i> | | | | | 4 | 378 | 128 | | 49 | | 21 | | | | 5 | 326 | 120 | 177
143 | 49 | 51 | | | | | 6 | 163 | 87 | 123 | 36 | | | | | | 7 | 118 | 68 | 109 | 41 | | | | | | 8 | 300 | 117 | 117 | | | | | | | 9 | 327 | 75 | 75 | | | | | | | 10 | 244 | 73 | 73 | | | | | | | 11 | 299 | 123 | 183 | 60 | 52 | - | | | | 12 | 379 | 84 | 138 | 54 | - | | | | | 13 | 302 | 120 | 172 | 52 | | | _ | | | 14 | | | | | | _ | | | | 15 | 322 | 140 | 264 | 124 | | | _ | | | 16 | 268 | 125 | 153 | 28 | 50 | _ | | | | 17 | 267 | 133 | 133 | | | | | | | 18 | 292 | 108 | 127 | 19 | | | | | | 19 | 237 | 81 | 121 | 40 | | | | | | 20 | 282 | 139 | 151 | 12 | | _ | _ | | | 21 | 271 | 135 | 15 9 | 24 | _ | _ | _ | | | 22 | 290 | 70 | 97 | 27 | | | | | | 23 | 211 | 107 | 107 tog | | | | | | | 24 | 300 | 140 | 216 | 76 | 50 | | | | | 25 | 281 | 140 | 209 | 69 | | | | | | 26 | 270 | 132 | 3 92 201 | 69 | | | | | | 27 | | _ | | | | | | | | 28 | | | | | | | | | | 29 | 295 | 99 | 156 | 57 | | | 100 | | | 30 | 325 | 100 | 164 | 64 | | | 100 | | | 31 | 357 | 59 | 119 | 60 | 25 | | | | | 32 | 280 | 140 | 207 | 67 | 35 | | | | | 33 | 552 | 137 | 241 | 104 | 24 | | | | | 34 | 185 | 91 | 129 | 38 | 38 | | | | | 35 | 343 | 184 | 242 216 | 58
75 | 34 | | | | | 36 | 286 | 140 | 215 | 75
140 | 51
52 | | | | | 37 | 263 | 123 | 263
159- (58 | 140 | 52 | | | | | 38
39 | 248 | 124
137 | 205 | 35
68 | 10
51 | | | | | 39
40 | 281
343 | 100 | 203
172 198 | 68
72 | 51
27 | | | | | 40
41 | 343
341 | 117 | 160 | 43 | <i></i> | | | | | 42 | 315 | 135 | 135 | 73 | | | | | | 43 | 372 | 125 | 125 | | 10 | منحت | | | | 43
44 | 140 | 140 | – No | | 1 U | | | | | 45 | 289 | 138 | 138 | _ | | <u></u> | | | | 13 | 207 | 150 | 130 | | | | | | Totals | | ,12,515 | 4,644 | 6,566 | 1 ,7 82√ | 659 | 63 | 100 | ^{1/} Cursory examination of stomach contents with gross estimates of volume for major taxa recorded Table 5. Numbers of pollock sampled for various types of biological data/samples, by haul, on CHAPMAN Cruise 83-02, Leg II. | | HALL | LENGIHS | OTOLITHS | MATURITIES | WEIGHTS | STOMACH
SCANS | |--------|------|-------------|----------------------------|---------------------|-------------------|------------------| | | | | | | | | | | 1 | 179 | 50 | 199 110 | 60 | | | | 2 | 209 | 50 | 209 182 | 133 132 | | | | 3 | 222 | 50 | 222 122 | 72 | | | | 4 | 259 | | سر 11 سر | | | | | 5 | 237 | 50 | 95 | | | | | 6 | 313 | | 116 | | | | | 7 | 380 | | 28 | 28 | . | | | 8 | 271 | 50 | 116 | 66 | 10 | | | 9 | 302 | 99 | 180 179 | & 1 80 | 20 | | | 10 | 88 | 88 | 108 88 | 88 | 20 | | | 11 | 206 | 25 | 28 , 74 | 7 8 49 | 10 | | | 12 | | | | | | | | 13 | 394 | 113 | 210 | 97 | | | | ×14 | - 304 | 113 | 238 | - 125 | 21 | | Totals | | 2,970 | 5 50 575 | 1,419 | 615 700 | 81 | Let Cursory examination of stomach contents with gross estmates of volume for major taxa recorded. Table 6. Preliminary age specific biomass (10³ t) and populaton (numbers x 10⁶) estimates of pollock and their mean length (cm) and weight (g) at mean length for the first and second MILLER FREEMAN surveys (combined) of Shelikof Strait in 1983. | | | | | | | <u>AGE</u> | | | | | | |----------------------|--------|-------------------|-------|--------|--------|------------|--------|-------|--------|--------|--------| | | 1 | 2 | 3 | 4 | 5. | 6 | 7 | 8 | 9 | 10 | 11 | | Sex ratio 1/ | | .53 | .46 | .55 | .60 | .63 | .58 | .50 | .60 | | | | Biomass $\frac{2}{}$ | • | 28.9 | 74.2 | 503.9 | 767.1 | 569.7 | 371.0 | 65.5 | 22.4 | 5.0 | 5.2 | | % of total | | 1.2 | 3.1 | 20.9 | 31.8 | 23.6 | 15.4 | 2.7 | 0.9 | 0.2 | 0.2 | | Numbers 3/ | | 372.0 | 244.6 | 1268.9 | 1452.3 | 927.4 | 662.5 | 91:7 | 2.5 | 5.1 | 5.1 | | % of total | | 7.4 | 4.8 | 25.1 | 28.7 | 18.3 | , 13.1 | 1.8 | 0.5 | 0.1 | 0.1 | | Mean length | | | | | | | , | | | | | | Males | | 22.4 | 33.6 | 38.0 | 41.6 | 43.3 | 41.6 | 45.1 | 45.3 | | 52.0 | | Females | | 23.0 | 36.6 | 39.0 | 42.8 | . 45.8 | 44.6 | 47.7 | 56.0 | 52.0 | | | combined | | 22.7 | 35.2 | 38.4 | 42.1. | 44.2 | 42.9 | 46.4 | 49.6 | 52.0 | 52.0 | | Weight at mean | length | ı (gm) <u>4</u> / | | | | | | | | | | | Males | | 75.5 | 259.9 | 378.1 | 498.2 | 562.9 | 498.2 | 637.3 | 646.0 | | 983.5 | | Females | | 80.4 | 344.8 | 420.7 | 563.0 | 696.2 | 640.6 | 790.8 | 1307.5 | 1036.5 | | | Combined | • | 77.8 | 303.2 | 397.1 | 528.2 | 614.3 | 560.0 | 714.2 | 878.3 | 1016.9 | 1016.9 | $[\]frac{1}{2}$ sex ratio = proportion males ^{2/} total pollock biomass = 2.043×10^3 t (mean of estimates for MILLER FREEMAN surveys 1 and 2) ^{3/} total number = 5,055x10⁶ pollock ^{4/} wights calculated using length/weight regression coefficients Table 7. Estimated pollock biomass in Shelikof Strait in 1980, 1981 and 1983. | Y e a r | Survey | Survey
dates | | Biomass (t) | | 95 % Cmfidence interval (t) | | | | | |---------|--------------|-----------------|------------|-------------|-----------|-----------------------------|-----------|--|--|--| | 1980 | 1 | April | 11–14 | 708,983 | 566,024 | - | 815,942 | | | | | 1981 | 1 | March | 3–15 | 4,380,032 | 2,922,163 | - | 5,837,900 | | | | | | 2 | March | 24-27 | 3,147,444 | 2,073,752 | _ | 4,230,533 | | | | | Mea | n of sur | veys 1 | & 2 | 3,763,738 | 2,857,028 | _ | 4,670,448 | | | | | | 3 | April | 4–10 | 3,050,096 | 2,022,384 | - | 4,077,807 | | | | | | | | | | | | | | | | | 1983 | 1 | March | 6-15 | 2,465,753 | 1,536,062 | - | 3,395,445 | | | | | | 2 | March | 16-19 | 2,360,348 | 1,260,685 | - | 3,460,011 | | | | | Mea | n of sur | veys 1 | & 2 | 2,413,051 | 1,693,054 | _ | 3,133,048 | | | | | | 3 <u>2</u> / | March | 25-April 3 | 903,634 | 466,424 | _ | 1,340,843 | | | | | | 4 | April | 6–13 | 818,932 | 571,784 | - | 1,066,080 | | | | | | | | | | | | | | | | ^{1/} Survey dates include only days when echo integration data were collected. ^{2/} Survey conducted by CHAPMAN; all others by MILLER FREEMAN. Figure 1. Survey tracklines run by the MILLER FREEMAN during Legs III (A) and IV (B) of Cruise 83-01. Figure 2. Survey tracklines run by the CHAPMAN during Leg II of Cruise 83-02 Figure 3. Locations of trawl hauls made by the MILLER FREEMAN during Legs III and IV of Cruise 83-01 (upper) and by the CHAPMAN during Leg II of Cruise 83-02 (lower). Figure 4. Distribution of relative pollock density in Shelikof Strait during the three surveys conducted by the MILLER FREEMAN; density data from echo integration analysis.